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Abstract
Mixed-format tests, which typically include dichotomous items and polytomously scored tasks, are employed to assess a wider 
range of knowledge and skills. Recent behavioral and educational studies have highlighted their practical importance and methodo-
logical developments, particularly within the context of multivariate generalizability theory. However, the diverse response types 
and complex designs of these tests pose significant analytical challenges when modeling data simultaneously. Current methods 
often struggle to yield reliable results, either due to the inappropriate treatment of different types of response data separately 
or the imposition of identical covariates across various response types. Moreover, there are few software packages or programs 
that offer customized solutions for modeling mixed-format tests, addressing these limitations. This tutorial provides a detailed 
example of using a Bayesian approach to model data collected from a mixed-format test, comprising multiple-choice questions 
and free-response tasks. The modeling was conducted using the Stan software within the R programming system, with Stan codes 
tailored to the structure of the test design, following the principles of multivariate generalizability theory. By further examining 
the effects of prior distributions in this example, this study demonstrates how the adaptability of Bayesian models to diverse test 
formats, coupled with their potential for nuanced analysis, can significantly advance the field of psychometric modeling.
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Introduction

Mixed-format tests encompass assessments that combine 
various formats, such as multiple-choice questions (MCQs) 
and free-response tasks (FRTs), aiming to encompass a 

broader spectrum of knowledge and skills through diverse 
response types. In contrast to single-format tests, mixed-for-
mat tests offer a more comprehensive evaluation of students' 
abilities, mitigating potential bias that might stem from rely-
ing solely on one question type (Rodriguez, 2003). A notable 
example of mixed-format tests is the AP German Language 
exam, featuring 65 MCQs and 4 FRTs (Bischof, 2005), with 
responses assessed by raters. However, the analysis and 
interpretation of mixed-format test results can be intricate, 
given the necessity to address distinct designs and sources 
of error for each item format.

Unlike traditional univariate generalizability theory 
(G-theory; Cronbach, 1972; Brennan, 2001a) that decom-
poses test or measurement variance, multivariate generaliza-
bility theory (MG theory) serves as a statistical framework to 
account for multivariate response data (Shavelson & Webb, 
1991). As MG theory applies to studies involving multiple 
subtests or subdomains, its outcomes include covariance and 
correlation data alongside variance estimates from the corre-
sponding decomposition. MG theory empowers researchers 
to precisely model and analyze sources of error and variabil-
ity tied to each facet (e.g., rater effect, task effect, and station 
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effect), thereby shedding light on test reliability and valid-
ity. MG theory has been extensively applied across diverse 
studies, including instructional evaluations (Gillmore et al., 
1978), teaching behavior assessment (Shavelson & Demp-
sey–Atwood, 1976), psychotherapy process ratings (Wasser-
man et al., 2009), clinical research (Lakes & Hoyt, 2009), 
and personality inventory studies (Arterberry et al., 2014).

Emerging from the mainstream use of MG theory, 
which primarily focuses on subtests/subdomains, Bren-
nan et al. (2022) have adapted this method to investigate 
mixed-format tests (including AP German Language exam 
used in the latter section), which are considered intricate 
design structures (Sinharay, 2015). When considering the 
same population responding to both formats, this configu-
ration is represented as the notation {p∙ × i}{p∙ × (r ∶ i)} in 
the language of G theory. In this context, p represents the 
person (random) effect, i stands for the item/task (random) 
effect, and r denotes the rater (random) effect. The nota-
tion "facet1 × facet2" is used to denote crossed facets, while 
"facet1 : facet2" is used to denote that facet1 is nested within 
facet2. The superscript bullet symbolizes that an identical 
group of individuals responds to both item types, under the 
assumption that each rater potentially rates different items 
in the second format. The utilization of two sets of braces 
indicates two levels (MCQs and FRTs) within the fixed 
facet. In MG theory notation, this same design is denoted as 
p∙ × [i◦ ∪ (r◦ ∶ i◦)] , where ∪ represents the union of the two 
fixed facets, namely MCQs and FRTs. The open circle super-
script signifies that measurement conditions differ between 
these two formats. The MG theory notation can be visually 
explained through Venn diagrams depicted in Fig. 1. In G 
theory, Venn diagrams are used to visually represent the 
relationships between different facets (sources of variabil-
ity) in a measurement design. As each facet is represented 
by a big circle, the relationships between facets (crossed, 
nested, or independent) are depicted using overlapping, con-
centric, or separate circles, respectively. Crossed facets are 
represented by overlapping circles, indicating that each level 
of one facet can be combined with each level of the other 
facet. Nested facets are represented by concentric circles, 
with the nested facet positioned inside the circle representing 
the facet in which it is nested. Independent (disconnected) 
facets are represented by separate, non-overlapping circles, 
indicating that the levels of one facet are completely unre-
lated to the levels of the other facet. MG theory’s diagrams 
also include dots within the circles to represent the variables 
being measured. Filled dots indicate that a variable is present 
within a particular facet or combination of facets. For exam-
ple, if a filled dot is placed within the overlapping region of 
two crossed facets, it means that the variable is measured for 
all combinations of levels of those two facets. Blank dots, 
on the other hand, indicate that a variable is absent within 
a particular facet or combination of facets. If a blank dot is 

placed within a circle representing a facet, it means that the 
variable is not measured for any levels of that facet. The 
placement of filled and blank dots within the Venn diagram 
helps researchers understand which variables are measured 
within each facet and how the variables are related to the 
facets. If the two formats were modeled individually instead 
of being treated as a whole, like Fig. 1 presents, one can 
translate the MG theory design into its univariate version: p 
× i and p × (r : i) for MCQs and FRTs, respectively.

From a statistical perspective, facets within (M)G the-
ory are regarded as random effects, while (traditional) 
intercepts/means and slopes are treated as fixed effects. 
When both effect types are present, they suggest linear 
mixed-effect modeling (LMM). MG theory can be under-
stood as LMM. Using the FRT’s univariate G-theory p 
× (r : i) design for example, a response/score of a person 
rated by a rater on a task/item can be decomposed into 
xp(r∶i) = � + �p + �i + �r∶i + �pi + e , while e is the residual 
that can be also termed as �p(r∶i) and � is the intercept/mean. 
Each � is assumed to follow a normal distribution with a zero 
mean and a corresponding variance (e.g., �p ∼ N(0, �2

p
) ). The 

multivariate component in MG theory, on the other hand, 
requires some � ∼ MVN(0,Σ) while the subscript should be 
added to indicate the facet. These � s and � s are the random 
effects and the intercepts/means are the fixed effect of LMM. 
LMM estimation can be conducted through established 
methods like maximum likelihood (ML), restricted maxi-
mum likelihood (REML), and Bayesian estimation (Jiang 
& Skorupuski, 2018). Alternatively, a well-known method 
called expected means squares (EMS) remains prevalent, 
particularly in studies utilizing the mGENOVA software 
(Brennan, 2001b) for MG theory analysis.

However, these estimations are predicated on the assump-
tion that responses in G theory follow a normal distribu-
tion, which limits the practical application of (M)G theory. 
Many response data, particularly in mixed-format tests, can 
be binary or ordinal, rendering this assumption less suit-
able. In such cases, if responses do not adhere to a normal 

Fig. 1   The Venn diagram of multivariate generalizability theory for a 
mixed-format test. Note: Overlap indicate crossing design facets and 
concentric circles indicate nested facets
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distribution but the preferred linear-like model is still desired 
for (M)G theory analyses, a link function is necessary to 
transform a non-linear relationship into a linear one. Com-
mon link functions and their descriptions are outlined in 
Table 1. It is important to note that LMM with link functions 
is referred to as generalized LMM (GLMM). GLMM, like its 
name suggests, is highly related to generalized linear mod-
els (GLMs), which are a flexible class of statistical models 
that extend the concept of linear regression to accommodate 
response variables with various distributions, such as binary, 
count, or categorical data. GLMs allow for the modeling of 
the expected value of the response variable as a linear com-
bination of predictor variables, linked through a specified 
link function. The choice of the link function depends on the 
distribution of the response variable. For example, logistic 
regression, a common type of GLM, uses the logit link func-
tion to model binary responses. The general formula for a 
GLM can be expressed as:

where g(·) is the link function, E(Y) is the expected value of 
the response variable Y, β₀ is the intercept, βi are the regres-
sion coefficients, and Xi are the predictor variables. GLMMs 
extend GLMs by incorporating random effects in addition to 
fixed effects. Random effects are used to account for clus-
tered, nested, or repeated measures data, where observations 
within a group are correlated. GLMMs can handle various 
types of response variables, similar to GLMs, but they also 
model the variability between groups or clusters. The gen-
eral formula for a GLMM can be expressed as:

where g(·), E(Y), β₀, βi, and Xi are the same as in the GLM 
formula, and bj are the random effects coefficients associated 
with the random effects variables Zj. GLMs and GLMMs 
are widely used in various fields, such as social sciences, 
ecology, and medical research, when the response variable 
is not normally distributed, and the relationships between 
the predictors and the response are not necessarily linear. 
These models provide a powerful and flexible framework for 

g(E(Y)) = �0 + �1X1 + �2X2 + ... + �pXp

g(E(Y)) = �0 + �1X1 + �2X2 + ... + �pXp + b1Z1 + b2Z2 + ... + bkZk

analyzing categorical, count, and other types of data while 
accounting for the specific characteristics of the response 
variable and the structure of the data. For a comprehensive 
treatment of GLMs, GLMMs, and their applications to cat-
egorical and ordinal data analysis, readers are encouraged 
to refer to the textbook by Agresti (2012).

Browne et al. (2001) highlighted the potential pitfalls if 
link functions are not accurately specified in LMM. Addi-
tionally, Broatch et al. (2018) demonstrated that jointly 
modeling different data types, as seen in mixed-format tests, 
results in significantly improved median log-loss and abso-
lute residuals of cross-validation predictions when correlated 
pairs of estimated random effects are employed. From both 
statistical and psychometrical perspectives, benefits of the 
joint estimation method are multifold (DeCarlo, 2024; Lee 
et al., 2020; Wei et al., 2023):

(1)	 Increased statistical power: By combining data from 
multiple sources or response formats, joint estimation 
methods can increase the overall sample size, leading 
to more precise and reliable estimates.

(2)	 Accounting for shared variance: Joint estimation meth-
ods can account for the shared variance between differ-
ent response formats, which may lead to more accurate 
estimates of the underlying constructs being measured.

(3)	 Improved model fit: Joint estimation methods may pro-
vide a better fit to the data by incorporating information 
from multiple sources, leading to more valid and reli-
able results.

(4)	 Reduced bias: By using information from multiple 
response formats, joint estimation methods may help 
reduce bias that could arise from relying on a single 
format.

(5)	 Enriched validity evidence: Construct validity: High 
correlations between the estimates derived from dif-
ferent formats or sources can provide evidence of con-
vergent validity, strengthening the overall validity of 
the measurements, while if the correlations between 
estimates of distinct constructs are low, it provides 
evidence of discriminant validity, indicating that the 
measurements are indeed assessing separate constructs.

Table 1   Common link functions and their uses

Link name Data type Distribution Function

Logit Integers: {0, 1} Bernoulli XΒ = ln(μ/(1–μ))
Logit integers: {0, 1, …, N} Binomial XΒ = ln(μ/(n–μ))
Identity real: (-∞, ∞) Normal Distribution XΒ = μ
Negative inverse real: (0, ∞) Exponential Distribution XΒ = -μ-1
Negative inverse real: (0, ∞) Gamma Distribution XΒ = -μ-1
Log integers: 0, 1, 2, … Poisson Distribution XΒ = ln(μ)
Probit Integers: {0, 1} Bernoulli XB = Φ-1(μ)
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Thus, the need for an easily implementable estimation 
method that facilitates incorporating link functions for mod-
eling mixed-format tests within the MG theory framework 
becomes apparent.

In addition to examining the statistical attributes of 
response data, this research draws inspiration from the grow-
ing trend of value-added models (VAM; McCaffrey et al., 
2003). In the realm of education, VAM advances existing 
theories by estimating the relationships between diverse 
teacher inputs and various student achievements, while also 
allowing for the assessment of tangible real-world outcomes 
like graduation. The exploration of simultaneously incorpo-
rating continuous and binary outcomes has been compre-
hensive, encompassing both methodological and empirical 
considerations (Park & Beretvas, 2020).

Similar to G theory, VAM employs linear mixed-effects 
modeling (LLM) to analyze data, considering teacher and/or 
school effects as random effects (Raudenbush, 2004). How-
ever, while the VAM literature offers plausible strategies 
for handling different data types in LMM, most available 
options lack the capacity to accommodate crucial elements 
of MG theory (Broatch et al., 2018). These elements include 
(1) cross-classified structures that involve more than three 
random effects with interactions, and (2) distinct compo-
nents for different formats, such as the item effect for mod-
eling MCQs and both item and rater effects for modeling 
FRTs.

Building on the foundations of applying MG theory to 
mixed-format tests (Brennan et al., 2022), this study method-
ologically expands modeling to incorporate various response 
data types (formats). This is achieved through a convenient 
realization in the R software within a Bayesian framework. 
Specifically, the study presents a solution for multivariate 
cross-classified mixed-effect modeling when both continu-
ous and discrete data coexist. Ultimately, this solution can 
be applied to the analysis of mixed-format tests within the 
MG theory framework.

Method

Bayesian estimation is chosen over traditional estimations 
(i.e., frequentist methods) for two primary reasons: the 
intrinsic advantages of Bayesian estimation and the capabili-
ties of the brms package (Bürkner, 2017) in the R software. 
A prominent feature of Bayesian modeling is its ability to 
incorporate prior information and beliefs about parameters 
into the analysis. This is particularly beneficial when there 
is existing knowledge or expert opinions, enhancing the 
interpretability and reliability of estimates (Marsman & 
Wagenmakers, 2017). Additionally, Bayesian estimation pro-
duces posterior distributions for model parameters, offering 
a transparent representation of the uncertainty linked with 

parameter estimates. This aids in comprehending the vari-
ability in parameter values and their implications (Wagen-
makers et al., 2018). Bayesian methods are also well suited 
for small sample sizes, effectively utilizing available infor-
mation and integrating prior knowledge (Smid et al., 2020). 
Moreover, Bayesian estimation adeptly handles missing data 
by treating missing values as parameters to be estimated, 
leading to more comprehensive use of available information 
(Enders, 2022). Notably, Bayesian methods offer flexibility 
in model specification, enabling the incorporation of various 
data distributions and intricate relationships among variables 
(Austerweil et al., 2015).

From a software standpoint, the brms package (Bürkner, 
2017) offers a streamlined approach to estimate Bayesian 
LLM by leveraging Stan, a widely used probabilistic pro-
gramming language for Bayesian estimation (Gelman et al., 
2015). This versatile package supports a wide range of distri-
butions and link functions, enabling users to model diverse 
scenarios, including binomial, Poisson, survival, response 
times, ordinal, quantile, zero-inflated, hurdle, and even non-
linear models within the GLMM framework. Notably, the 
brms package (Bürkner, 2017) facilitates the creation of Stan 
codes with a syntax familiar to users of the lme4 package 
(Bates et al., 2015), a dominant tool for LMM estimation in 
the R community. While the brms package does not inher-
ently provide solutions for jointly modeling different data 
types as multivariate dependent variables, its feature for gen-
erating complete Stan codes simplifies the process of cus-
tomization and adaptation. In addition, it is worth noting that 
the cumulative family is available for ordinal outcomes in 
the brms package, while unavailability for frequentist (ML) 
estimators limits other counterpart software packages to one 
random intercept only.

We obtained samples from a testing site of the Standard-
ized Competence Test for Clinical Medicine Undergraduates 
(SCTCMU) to demonstrate the proposed MG theory mode-
ling for mixed-format tests. The SCTCMU consisted of 300-
item MCQs with the well-known 1/0 scoring and six-tasks/
station performance assessment with 12 raters (i.e., each task 
was presented in a testing station, while a pair of raters were 
assigned to grade the performance of each person on a task). 
The scaled score made of a checklist for each task ranged 
from 0 to 16. In total, 533 persons were included into the 
study; their responses were the data for further modeling and 
estimation. Note that the random effect components of the 
SCTCMU were similar to the AP German Language exam 
as the same design was adopted. Therefore, the notations and 
the schema used in the AP German Language exam example 
can be adhered to the present demonstration.

In this context, the MCQs are treated as binary responses, 
while the FRTs are regarded as continuous variables. Spe-
cifically, the p∙ × [i◦ ∪ (r◦ ∶ i◦)] design can be decomposed 
to five covariance matrices accordingly: the left panel of 
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Fig. 2 shows the specifications where X implies existing 
estimates and NA indicates missing for not applicable to 
those measurements. It can be seen that Σp is the only dense 
matrix where others are sparse matrices. Σi is a diagonal 
matrix because the items of the MCQs and the tasks in the 
FRTs are both labelled as i and they are independent to 
each other. Σr∶i implies that the rater effect, denoted as r, 
is nested within tasks in the FRTs; it contains NA as this 
effect is unique to the FRTs only, of which the logic applies 
to Σp(r∶i) . Note that the first element of Σpi setting to NA 
credits to the assumption that MCQs follow a binary distri-
bution. Therefore, deploying the logit/probit link function 
becomes necessary according to the assumption, while no 
residual effect is calculable due to the statistical identifi-
ability issue, because both the expected value and variance 
of a binary variable are a function of a single parameter (the 
probability of success). However, if MCQs are considered 

to be normally distributed, the first element of Σpi should be 
marked as X instead of NA. In this section, the right panel 
of Fig. 2 shows samples of the data, of which the expression 
is in a long type (i.e., each row only contains one response 
value). If it is an MCQ, the rater column is NA because these 
items are not measured by different raters and the response 
is either 1 or 0. On the other hand, when it comes to an FRT, 
one can also track the information about raters and tasks 
(i.e., items). Note that the nested structure of r◦ ∶ i◦ is also 
apparent from the example data in Fig. 2, as different sets of 
raters assess each item.

Based on the setting outlined in Fig. 2, we split the com-
plete data into two subsets, SCTCMU_MCQ and SCTCMU_
FRT for analytical purposes and deployed the brms package 
to model the two formats separately, of which the corre-
sponding lines below were executed in the R software.

Fig. 2   Covariance components and sample data of SCTCMU and AP 
German Language exam. Note: Σ =

[

�2

MCQ
�MCQ,FRT

�MCQ,FRT �2

FRT

]

 ; the rater col-
umn and first element of Σr∶i and Σpr∶i is NA because MCQs are not 
measured by different raters; the first element of Σpi is NA because 
MCQs follow a binary distribution

fit1_bayes < − brm(MCQ ∼ (1| Person) + (1| Item), data = SCTCMU_MCQ, family = bernoulli)

fit2_bayes < − brm(FRT ∼ (1| Person) + (1| Item) + (1| Rater) + (1| Person ∶ Item), data = SCTCMU_FRT, family = gaussian)

Note that other configurations were left default for the 
estimation (e.g., iteration number and priors for param-
eters); we refer readers to Bayesian literature (e.g., van 
de Schoot et al., 2021), the Stan manual (Carpenter et al., 
2017), and/or any other materials related to practical Bayes-
ian estimation for the configuring details. The parameter 

estimates could be investigated from fit1_bayes and fit2_
bayes, the R objects containing the outcomes of the separate 
modeling practice. Correspondingly, the frequentist meth-
ods can be achieved by executing the following lines. The 
results can be substantially different from the ones obtained 
via Bayesian estimation.

fit1_frequentist < − glmer(MCQ ∼ (1| Person) + (1| Item), data = SCTCMU_MCQ, family = binomial)

fit2_ frequentist < − lmer(FRT ∼ (1| Person) + (1| Item) + (1| Rater) + (1| Person ∶ Item), data = SCTCMU_FRT)

Although the separate models can provide useful descrip-
tions about the test, modeling responses from both for-
mats jointly is the pursue of this paper. The steps outlined 

below are optional because one can directly write codes 
from scratch. However, they surely deliver a faster way to 
construct the models without making inadvertent errors 
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in the model specification. To begin with, one can use the 
make_stancode and the make_standata functions from 
the brms package to generate codes to accommodate the 
specific requirement for the Stan modeling and Stan data 
lists. In terms of the modeling, one should (1) rename, (2) 
merge, and (3) revise the codes produced from the make_
stancode and the make_standata functions. Renaming can 

help distinguish variables from the models. For instance, 
when it comes to the number of the item effect’s levels, by 
default, Z_2_1 is used by the brms package for both models, 
but Z_2_1 of MCQs is almost always different from that of 
FRTs. Therefore, they need to be renamed as Z_2_1 _MCQ 
and Z_2_1 _FRT to ensure correct representations of the 
corresponding variables as following:

Table 2   Covariance components of pre-estimation with flat priors

Σ =

[

�2

MCQ
�MCQ,FRT

�MCQ,FRT �2

FRT

]

 ; the first element of Σr∶i and Σp(r∶i) is NA because MCQs are not measured by different raters; the first element of Σpi 

is NA because MCQs follow a binary distribution

Covariance Component M SD 95% CI

Σp

[

0.686 0.112

0.112 0.522

] [

0.036 0.028

0.028 0.044

] [

[0.606, 0.775] [0.057, 0.167]

[0.057, 0.167] [0.456, 0.595]

]

Σi

[

0.175 0

0 0.077

] [

0.015 NA

NA 0.061

] [

[0.147, 0.206] NA

NA [0.021, 0.234]

]

Σr∶i

[

NA 0

0 0.034

] [

NA NA

NA 0.011

] [

NA NA

NA [0.017, 0.057]

]

Σpi

[

NA 0

0 0.188

] [

NA NA

NA 0.701

] [

NA NA

NA [0.002, 1.111]

]

Σp(r∶i)

[

NA 0

0 0.588

] [

NA NA

NA 0.014

] [

NA NA

NA [0.560, 0.615]

]

Original code ∶ vector[N] Z_2_1;

Code after renaming ∶ vector[N_���] Z_2_1_���; vector[N_���] Z_2_1_���;

Merging after the renaming from the two models requires 
allocating codes to correct Stan chunks: “data”, “transformed 
data”, “parameters”, “transformed parameters”, and “model”. 
This step is fairly straightforward and paves the foundation 
for the following step. Revising implies the changes needed 
for jointly modeling, primarily reflecting on “parameters”, 
“transformed parameters” and “model” chunks. Specifically, 
in addressing the person effect’s covariance matrix into the 
model, a “cov_matrix” should be specified in “parameters” 
chunk, its random effect for each person (i.e., bivariate latent 
variables Θp ) should be specified in “transformed param-
eters” chunk, and “model” chunk should include the rela-
tion that Θp follows a multivariate normal distribution with a 
mean vector of zeros and the “cov_matrix” covariance. The 
complete codes with an analysis for a toy dataset are shown 
in the Supplementary Material; as one can see, no priors were 
set for the parameter estimates.

Analysis

Joint estimates of the covariance components for FRT and 
MCQ data from the SCTCMU were obtained using the pre-
viously mentioned method. Reporting guidelines such as 

ROBUST (Reporting Of Bayes Used in clinical STudies) and 
BARG (Bayesian analysis reporting guidelines) were recom-
mended in practice. Following such guidelines would help 
researchers to communicate their Bayesian analyses more 
clearly and consistently (Sung et al., 2005; Kruschke, 2021). 
The brms package was used to generate the initial stan code 
and appropriately formatted data for stan. This code and data 
were subsequently renamed, merged, and revised, resulting 
in an amalgamated code and data (available at https://​osf.​
io/​wud3x). The rstan package was employed for analysis 
with four chains, 6000 iterations for warmup and a total of 
9000 iterations.

To enhance the robustness of the Bayesian estimator's 
convergence, data-dependent priors (similar to empirical 
Bayes priors) were utilized. We commenced by pre-estimat-
ing the mixed-format data using stan’s default flat priors 
(Serang et al., 2015; Shi & Tong, 2017). The preliminary 
estimates of the covariance components are presented in 
Table 2. The estimated parameter means �np and standard 
deviations sdnp were then employed in the prior distributions 
in the formal estimation process, as depicted in Table 3. A 
normal distribution, with means and standard deviations 
matching those from the initial estimation, was chosen as the 

https://osf.io/wud3x
https://osf.io/wud3x
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prior for the intercepts. The inverse-Wishart distribution was 
used for covariance components for persons with degrees of 
freedom d and 2 × 2 matrix S. The inverse-Wishart distribu-
tion, characterized by degrees of freedom (d) and a 2 × 2 
scale matrix (S), was used for the covariance components 
of individuals. The hyperparameters for the inverse-Wishart 
distribution were computed using the formula described by 
Muthén and Asparouhov (2012), ensuring consistency of 
the marginal means with those from the noninformative 
Bayesian estimation. The marginal standard deviation for 
the first element of the covariance matrix was also retained. 
For variance components of FRT items, FRT raters, FRT 
person-item interactions, FRT residuals and MCQ items, 
an inverse-gamma distribution was utilized with hyperpa-
rameters α and β, setting to align the means and standard 
deviations with those from noninformative Bayesian estima-
tion. Mean, standard deviation (SD) and 95% central cred-
ible interval (CI) of variance components were reported in 
following.

The results of the G study are exhibited in Table 4, 
shown as 2 × 2 covariance matrices for each facet with 
rows and columns ordered as MCQ and FRT. Examples of 
MCMC plot are shown in Fig. 3. Variance components for 
persons in MCQ and FRT were 0.683 (SD = 0.025, 95% 
CI = [0.623, 0.747]) and 0.509 (SD = 0.032, 95% CI = 
[0.462, 0.560]) separately, suggesting that variability 
among persons explained the total variability of MCQ and 
FRT scores largely. The covariance between MCQ and 
FRT is 0.111 (SD = 0.020, 95% CI = [0.073, 0.152]), 
showing a substantial linked or crossed facet. Variance 
components for items in MCQ and FRT were 0.369 (SD = 
0.013, 95% CI = [0.344, 0.397]) and 0.202 (SD = 0.047, 
95% CI = [0.134, 0.315]), which suggests there is some 
variability among rater scores. For FRT, �2

r∶i
 = 0.088 (SD 

= 0.005, 95% CI = [0.078, 0.099]), suggesting there is 
some variability in rater scores for any item; �2

pi
 = 0.268 

(SD = 0.084, 95% CI = [0.160, 0.483]), suggesting there 
is some variability among persons with respect to their 

Table 3   Covariance components of pre-estimation with flat priors

Σ =

[

�2

MCQ
�MCQ,FRT

�MCQ,FRT �2

FRT

]

.

Parameter Prior distribution M SD

InterceptFRT Normal (11.949, 0.216) 11.949 0.216
InterceptMCQ Normal (0.016, 0.046) 0.016 0.046
Σp

Inverse-Wishart (425.500, 

[

220.545 47.320

47.320 289.84

]

)

[

0.522 0.112

0.112 0.686

] [

0.036 0.030

0.030 0.047

]

�2

i,FRT
Inverse-gamma (3.593,0.200) 0.077 0.061

�2

i,MCQ
Inverse-gamma (138.111,23.994) 0.175 0.015

�2

r∶i,FRT
Inverse-gamma (11.554,0.359) 0.034 0.011

�2

pi,FRT
Inverse-gamma (2.072,0.202) 0.188 0.701

�2

p(r∶i),FRT
Inverse-gamma (1766,1038) 0.588 0.014

Table 4   Results of covariance components of SCTCMU data

Σ =

[

�2

MCQ
�MCQ,FRT

�MCQ,FRT �2

FRT

]

 ; the first element of Σr∶i and Σp(r∶i) is NA because MCQs are not measured by different raters; the first element of Σpi 

is NA because MCQs follow a binary distribution

Covariance Component M SD 95% CI

Σp

[

0.683 0.111

0.111 0.509

] [

0.025 0.020

0.020 0.032

] [

[0.623, 0.747] [0.073, 0.152]

[0.073, 0.152] [0.462, 0.560]

]

Σi

[

0.369 0

0 0.202

] [

0.013 NA

NA 0.047

] [

[0.344, 0.397] NA

NA [0.134, 0.315]

]

Σr∶i

[

NA 0

0 0.088

] [

NA NA

NA 0.005

] [

NA NA

NA [0.078, 0.099]

]

Σpi

[

NA 0

0 0.268

] [

NA NA

NA 0.084

] [

NA NA

NA [0.160, 0.483]

]

Σp(r∶i)

[

NA 0

0 0.712

] [

NA NA

NA 0.007

] [

NA NA

NA [0.699, 0.726]

]
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scores of items; �2
p(r∶i)

 = 0.712 (SD = 0.007, 95% CI = 
[0.699, 0.726]), suggesting there is some variability in 
residual. The R-hat values for all parameters were below 
1.01, indicating satisfactory convergence. The relative and 
absolute error variances for FRTs were 0.0322 and 0.0637, 
respectively, while the generalizability and phi coefficients 
were 0.941 and 0.889. For MCQs, the absolute error vari-
ance was 0.0012, with a phi coefficient of 0.998, indicated 
a highly reliable composite even with relatively noisy 
measurements.

Discussion and conclusion

With appropriate modeling and estimation for a mixed-for-
mat tests, the analysis can provide many benefits. The first 
advantage is that understanding the correlation between tar-
get constructs allows educators and evaluators to gain a more 

nuanced view of a student’s overall competencies and learn-
ing needs. In addition, the knowledge of the relationship 
between these constructs aids in designing tests that are both 
valid and reliable: If there is a strong correlation, it might 
suggest that both constructs are measuring similar aspects 
of knowledge or skill, while conversely, a weak correla-
tion could indicate that they are assessing distinct domains. 
Similarly, it provides deeper insights into the association 
between target constructs that can inform teaching methods 
and curriculum design: stronger correlation suggests that 
improvements in one area might lead to improvements in 
the other. Following the same vein, more accurate estimates 
of the model are vital for providing tailored feedback and 
support to students (e.g., if a student excels in MCQs but 
struggles with writing tasks, this disparity can highlight spe-
cific areas where the student needs further support). Finally, 
the estimates are critical for setting appropriate standards 
and making informed decisions about educational policies, 

Fig. 3   MCMC plots of main parameters
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particularly those related to tests and accountability. In 
the analysis, Σp could be further converted to a correlation 
matrix for a more straightforward interpretation: the correla-
tion between MCQs and performance assessment was near 
0.2. Ideally, one would expect the correlation to be moderate 
to reflect theoretical association as well as distinction of the 
corresponding constructs according to subscore literature: 
the range (after disattenuating via a psychometric model) 
from 0.3 to 0.8 makes a meaningful correlation for a test 
with subdomains (Feinberg & Jurich, 2017; Haberman & 
Sinharay, 2010; Raymond & Jiang; 2020). Apparently, 0.2 
does not belong to the ideal range: the weak value may imply 
further revamping on this test.

When Bayesian methods are employed, the estimation 
is advantageous in that it enables the incorporation of prior 
information into the modeling process. Bayesian analysis 
incorporates prior knowledge or beliefs into estimation and 
updates the posterior estimation of the model parameters of 
interests. In medical education research, knowledge about 
medical tests is dynamic in that the tests are assessed over 
time among different test-takers. Test takers’ knowledge in 
specific domains as well as test administrators’ insights on 
the test takers both evolve over time. This study uses Bayes-
ian methods to incorporate the prior knowledge about these 
information pieces. Specifically, we used inverse-Wishart 
distribution as the prior for the variance-covariance param-
eter matrix (e.g., Barnard et al., 2000). As a conjugate prior 
for the variance-covariance matrix under normal likelihood 
(e.g., Gelman et al., 2013), inverse-Wishart distribution is 
used to lead to closed-form posterior distributions of the 
parameter estimates of the relationships between MCQs 
and performance assessment. Furthermore, to improve 
estimation performance, we chose the hyperpriors by first 
using noninformative priors for the variance-covariance 
matrix. We then used the estimated parameters as a type 
of informative prior and re-analyzed the model to obtain 
the final estimates for the variance-covariance matrix. Our 
study is advantageous in at least two ways. First, using the 
conjugate inverse-Wishart distribution for the variance-
covariance matrix for the relationship between MCQs and 
performance assessment, we obtain an improved conver-
gence rate. Second, in the choice of hyperpriors, we used 
a concept similar to data-dependent priors (DDP; Serang 
et al., 2015), however, the key distinction lies in how the 
data-dependent estimates were obtained. While DDP used 
the frequentist method for obtaining the sample-based esti-
mates, our study uses Bayesian techniques for the estimation, 
making our study a fully Bayesian approach for the analy-
sis. Recent research proceedings suggest that using the data 
dependent priors improve estimation performance in mixed-
effects models under nested data structure (e.g., McNeish, 
2016; Shi & Tong, 2017); therefore, we believe the analytic 

approach in the current study is advantageous in improved 
estimation performance.

The modeling should align with the design, which turns 
out to be the determinant of the statistical and program-
ming complexity. In the analysis, matrices such as Σi and 
Σr∶i were simple. Yet in designs with both cross-classified 
and higher-order nested structures, the modeling decompo-
sitions and covariance constructions could be highly intri-
cated. One needs to be able to discern what components 
should be included. For instance, the analysis implied that no 
additional Σr should be specified because it was subsumed in 
Σr∶i , else the redundant part may cause wrongful estimates 
and/or convergence failure.

Combining binary and continuous response variables, as 
demonstrated in this study, is a common practice in the realm 
of educational assessments and psychometrics. However, the 
generalization of our methodology to encompass more than 
two dimensions, alongside the integration of diverse link 
functions, offers substantial practical benefits, especially in 
the context of more complex testing scenarios. By extending 
the model to include multiple dimensions, one can capture 
a broader range of skills and abilities, reflecting the multi-
faceted nature of educational achievement in alignment with 
the theoretical framework. This multi-dimensional approach 
allows for a more nuanced understanding of student perfor-
mance, acknowledging that proficiency is not a monolithic 
construct but rather a composite of various interrelated 
competencies. Furthermore, the adoption of diverse link 
functions can pave the way for a more flexible and accurate 
representation of the relationships between different types 
of assessment data: link functions can be tailored to specific 
types of response data, thereby enhancing the model's abil-
ity to accurately reflect the underlying processes of educa-
tional assessments. For instance, a cumulative logistic link 
function might be ideal for binary data, while a cumulative 
probit or complementary log-log link could be more suitable 
for ordinal values, which are not rare in G theory modeling 
(Ark, 2015; van der Ark et al., 2023; Vispoel et al., 2019).

Finally, in a typical MG theory study, composite reli-
ability indexes are often used to indicate the psychometric 
quality of a test with multidimensional constructs. There are 
variations of the composite reliability indexes for different 
purposes, for instance, G index recently proposed by Jiang 
and Raymond (2018) can be used to evaluate the appro-
priateness of subscore reporting. There is no known index, 
however, to serve the similar function for mixed-format tests 
via MG theory. Therefore, devising indexes to accommodate 
the specific design is necessary for easier decision-making 
process, despite that a systematic investigation of the indexes 
as well as suggested cut-off values are needed prior to the 
actual application.
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